首页> 外文OA文献 >Toward lifelong visual localization and mapping
【2h】

Toward lifelong visual localization and mapping

机译:走向终身视觉定位和制图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobile robotic systems operating over long durations require algorithms that are robust and scale efficiently over time as sensor information is continually collected. For mobile robots one of the fundamental problems is navigation; which requires the robot to have a map of its environment, so it can plan its path and execute it. Having the robot use its perception sensors to do simultaneous localization and mapping (SLAM) is beneficial for a fully autonomous system. Extending the time horizon of operations poses problems to current SLAM algorithms, both in terms of robustness and temporal scalability. To address this problem we propose a reduced pose graph model that significantly reduces the complexity of the full pose graph model. Additionally we develop a SLAM system using two different sensor modalities: imaging sonars for underwater navigation and vision based SLAM for terrestrial applications. Underwater navigation is one application domain that benefits from SLAM, where access to a global positioning system (GPS) is not possible. In this thesis we present SLAM systems for two underwater applications. First, we describe our implementation of real-time imaging-sonar aided navigation applied to in-situ autonomous ship hull inspection using the hovering autonomous underwater vehicle (HAUV). In addition we present an architecture that enables the fusion of information from both a sonar and a camera system. The system is evaluated using data collected during experiments on SS Curtiss and USCGC Seneca. Second, we develop a feature-based navigation system supporting multi-session mapping, and provide an algorithm for re-localizing the vehicle between missions. In addition we present a method for managing the complexity of the estimation problem as new information is received. The system is demonstrated using data collected with a REMUS vehicle equipped with a BlueView forward-looking sonar. The model we use for mapping builds on the pose graph representation which has been shown to be an efficient and accurate approach to SLAM. One of the problems with the pose graph formulation is that the state space continuously grows as more information is acquired. To address this problem we propose the reduced pose graph (RPG) model which partitions the space to be mapped and uses the partitions to reduce the number of poses used for estimation. To evaluate our approach, we present results using an online binocular and RGB-Depth visual SLAM system that uses place recognition both for robustness and multi-session operation. Additionally, to enable large-scale indoor mapping, our system automatically detects elevator rides based on accelerometer data. We demonstrate long-term mapping using approximately nine hours of data collected in the MIT Stata Center over the course of six months. Ground truth, derived by aligning laser scans to existing floor plans, is used to evaluate the global accuracy of the system. Our results illustrate the capability of our visual SLAM system to map a large scale environment over an extended period of time.
机译:长时间运行的移动机器人系统需要稳健的算法,并且随着传感器信息的不断收集,该算法可以随着时间的推移有效扩展。对于移动机器人,基本问题之一是导航。这要求机器人具有其周围环境的地图,以便它可以规划其路径并执行该路径。让机器人使用其感知传感器进行同时定位和地图绘制(SLAM)对于完全自主的系统是有利的。在健壮性和时间可伸缩性方面,延长操作的时间范围给当前的SLAM算法带来了问题。为了解决这个问题,我们提出了一种简化的姿态图模型,该模型大大降低了全姿态图模型的复杂性。此外,我们使用两种不同的传感器模式开发了SLAM系统:用于水下导航的成像声纳和用于地面应用的基于视觉的SLAM。水下导航是受益于SLAM的一个应用领域,SLAM无法访问全球定位系统(GPS)。在本文中,我们介绍了用于两种水下应用的SLAM系统。首先,我们描述了实时成像声纳辅助导航的实现,该导航应用于使用悬停的自主水下航行器(HAUV)进行的现场自主船体检查。另外,我们提出了一种架构,该架构能够融合来自声纳和摄像头系统的信息。使用在SS Curtiss和USCGC Seneca上进行的实验期间收集的数据对系统进行评估。其次,我们开发了支持多会话映射的基于功能的导航系统,并提供了用于在任务之间重新定位车辆的算法。另外,我们提出一种用于在接收到新信息时管理估计问题的复杂性的方法。使用配备有BlueView前视声纳的REMUS车辆收集的数据演示了该系统。我们用于映射的模型建立在姿势图表示的基础上,这已被证明是一种有效且准确的SLAM方法。姿态图公式化的问题之一是,随着获取更多信息,状态空间会持续增长。为了解决这个问题,我们提出了简化的姿态图(RPG)模型,该模型对要映射的空间进行了划分,并使用这些划分减少了用于估计的姿态数。为了评估我们的方法,我们使用在线双目和RGB-Depth视觉SLAM系统呈现结果,该系统将位置识别用于鲁棒性和多会话操作。此外,为了实现大规模的室内地图绘制,我们的系统会根据加速度计数据自动检测电梯的运行情况。我们使用六个月来在MIT Stata中心收集的大约九个小时的数据来演示长期映射。通过将激光扫描与现有的平面图对齐得出的地面真相用于评估系统的整体精度。我们的结果说明了我们的可视SLAM系统可以在较长的时间内映射大型环境的能力。

著录项

  • 作者

    Johannsson, Hordur;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号